

Heterocyclic Letters Vol. 6| No.1|105-109| Nov-Jan| 2016 ISSN : (print) 2231–3087 / (online) 2230-9632 CODEN: HLEEAI http://heteroletters.org

BRIDGEHEAD NITROGEN HETEROCYCLIC SYSTEMS : FACILE SYNTHESIS, STEREOCHEMISTRY AND ANTIMICROBIAL ACTIVITY OF *cis*-8,8a-DIHYDROPYRAZOLO[3',4':4,5]THIAZOLO[2,3-*b*]-*s*-TRIAZOLO[3,4*b*][1,3,4]THIADIAZOLE

Anju RatheeAhlawat

Department of Applied Sciences, Maharaja Surajmal Institute of Technology, Janakpuri New Delhi-110058 (Affiliated with G.G.S.I.P University, New Delhi, India) E.Mail: anu.ahlawat@gmail.com

ABSTRACT

А facile synthesis of 9a-aryl-7H-8-aryl-3-(p-nitrophenyl)-cis-8,8a-dihydropyrazolo[3',4' :4,5]thiazolo[2,3-b]-s-triazolo[3,4-b][1,3,4] thiadiazole4 has been achieved. Condensation of 3-(pnitrophenyl)-6-aryl-s-triazolo[3,4-b][1,3,4] thiadiazole1 with thioglycollic acid yield 8a-aryl-3-(pnitrophenyl)-thiazolo [2, 3-b]-s-triazolo [3, 4-b][1,3,4]-thiadiazol-6(7H)-one 2. The thiazolidinones2 on reaction with p-chlorobenzaldehyde yield 7-p-chlorobenzylidene-8a-aryl-3-(pnitrophenyl)-thiazolo[2,3-b]-s-triazolo[3,4-b][1,3,4]-thiadiazol-6(7H)-one 3. Condensation of 3 with hydrazine hydrate furnish 4. The antibacterial and antifungal activity of some of the compounds have also been evaluated.

KEYWORDS

9a-aryl-7H-8-aryl-3-(*p*-nitrophenyl)-*cis*-8,8a-dihydropyrazolo[3',4':4,5]thiazolo[2,3-*b*]-*s*-triazolo[3,4-*b*][1,3,4] thiadiazole; 3-(*p*-nitrophenyl)-6-aryl-*s*-triazolo[3,4-*b*][1,3,4] thiadiazole; 8a-aryl-3-(*p*-nitrophenyl)-thiazolo [2, 3-*b*]-*s*-triazolo [3, 4-*b*] [1,3, 4]-thiadiazol-6 (7*H*)-one; 7-*p*-chlorobenzylidene-8a-aryl-3-(*p*-nitrophenyl)-thiazolo[2,3-*b*]-*s*-triazolo[3,4-*b*][1,3,4]-thiadiazol-6 (7*H*)-one; antibacterial and antifungal activity

INTRODUCTION

In continuation of our earlier work on the synthesis of novel bridgehead nitrogen heterocyclic systems^{i-viii} the author reports herein the synthesis of pyrazolo [3',4':4,5]thiazolo [2,3-*b*]-s-triazolo[3,4-*b*] [1,3,4] thiadiazole system.

3-(*p*-nitrophenyl)-6-(*p*-chlorophenyl)-*s*-triazolo[3,4-*b*][1,3,4] thiadiazole**1A**, obtained by the condensation of 3-(*p*-nitrophenyl)-4-amino- 5-mercapto- *s*-triazole with *p*-chlorobenzoic acid, oncondensation with thioglycollic acid afforded 8a-*p*-chlorophenyl-3-(*p*-nitrophenyl)-thiazolo[2,3-*b*]*s*-triazolo[3,4-*b*][1,3,4]thiadiazol-6(7*H*)-one **2A**. Condensation of **2A** with *p*-chlorobenzaldehyde yielde 7-*p*-chlorobenzylidene-8a-*p*-chlorophenyl-3-(*p*-nitrophenyl)-thiazolo[2,3-*b*]-*s*-triazolo[3,4*b*][1,3,4]thiadiazol-6(7*H*)-ones **3A**. The structures **2A** and **3A** were supported by their IR spectra. The parent thiazolidinone showed a peak at 1720cm⁻¹(>N-C=O) but the exocyclic double bond at 7position being in conjugation with the carbonyl group at 6-position produced a bathochromic shift^{ix} in the carbonyl absorption of **3A**. The band appeared at 1700cm⁻¹ in **3A** (Ar=*p*-Cl-C₆H₄). Condensation of **3A** with hydrazine hydrate yielded the cyclized products, 9a-aryl-7H-8-aryl-3-(*p*-nitrophenyl)-*cis*-8,8a-dihydropyrazolo[3',4':4,5] thiazolo[2,3-*b*]-*s*-triazolo[3,4-*b*][1,3,4]thiadiazoles**4A**. The structures of **4** were supported by their ¹H NMR spectral data (vide Experimental). The appearance of two doublets at δ 7.83 &7.95 (J=10.0 Hz) respectively for the protons 8a and 8 corroborated the cyclic structure and *cis* configuration^x.

ANTIMICROBIAL ACTIVITY

The compounds **2** and **4** were evaluated for their antimicrobial activity against the gram-positive *Staphylococcus aureus*, gram-negative *Escherichia coli* and *Pseudomonas aeruginosa* and the fungus *Candida albicans*. Neat samples and serial plate dilution method were used^{xi}.

The minimum inhibitory concentration (MIC) of the compounds **2** and **4** against *P. aeruginosa* and *S. aureus* were found to be 250 μ g/ml and 500 μ g/ml respectively. These compounds were also found tobe active against *C. albicans*, when tested as neat samples.

EXPERIMENTAL AND RESULTS

TLC was run on silica gel G plates using acetone-benzene (1:3) as irrigant. Melting points are uncorrected. IR (KBr)(cm⁻¹) and ¹H NMR (CDCl₃) (δ ppm downfield from TMS) spectra were recorded on a Hitachi-215 and Varian VXR-200 MHz spectrometers respectively. C, H and N analyses were carried out on a Yanaco MT-3 (Japan) analyser.

3-(p-Nitrophenyl)-6-p-chlorophenyl-s-triazolo[3,4-b][1,3,4] thiadiazole 1A

A mixture of 4-amino-5-mercapto-3-(*p*-nitrophenyl)-*s*-triazole (5.0g, 0.02mole) and *p*-chlorobenzoic acid (3.2g, 0.02mole) in POCl₃ (20ml) was heated under reflux in an oil bath at 120°C for one hour. The reaction mixture was cooled, poured into ice and neutralized with aq. K_2CO_3 solution. The solid thus separated was filtered, washed thoroughly with water and recrystallized from gl. acetic acid, yield 3.0g (39.78%), m.p.>250°C. (Found: C, 50.63; H, 2.48; N, 19.23; S, 8.76. C₁₅H₈N₅O₂SCl requires C, 50.34; H, 2.23; N, 19.58; S, 8.95%); IR : 830, 840 (1,4-disubstituted benzene ring), 1355, 1535 (Nitro group), 1525 (C-N stretching), 1610, 1625 (C=C & C = N), 3040 (aromatic C-H stretching).

A similar method was adopted for the synthesis of compound 3-(*p*-nitrophenyl)-6-*p*-nitrophenyl-*s*-triazolo[3,4-*b*][1,3,4]thiadiazole **1B** (Ar=*p*-O₂N-C₆H₄) having m.p. 230°C, yield 3.0g(38.65%). (Found: C,48.71; H,2.47; N, 22.67; S, 8.43. C₁₅H₈N₆SO₄ requires C, 48.91; H, 2.17; N, 22.80; S, 8.69%); IR: 820, 840 (1,4-disubstituted benzenering), 1345, 1540 (NO₂ group), 1525 (C-N stretching), 1600, 1620 (C = C and C = N), 3050 (aromatic C - H stretching).

Also3-(*p*-nitrophenyl)-6-*m*-chlorophenyl-*s*-triazolo [3,4-*b*][1,3,4]thiadiazole1C (Ar=*m*-Cl-C₆H₄) was prepared having m.p. 200°C, yield 2.9g (38.46%) (Found : C, 50.67; H, 2.52; N, 19.32; S, 8.67 $C_{15}H_8N_5SO_2C$ Irequires C, 50.34; H, 2.23; N, 19.58; S, 8.95%); IR : 770, 840, 880 (1,3 and 1,4-disubstituted benzene ring), 1350, 1530 (Nitro group), 1515 (C - N stretching), 1620 (C = C and C = N), 3040 (aromatic C-H stretching).

8a-p-Chlorophenyl-3-(p-nitrophenyl)-thiazolo[2,3-b]-s-triazolo[3,4-b] [1,3,4]thiadiazol-6(7H)-one 2A

A mixture of 1A (3.0g, .008mole), thioglycollic acid(0.77g, .008mole) in dry toluene (40ml) was heated under reflux using Dean-Stark water separator for 10-12 hr., concentrated & cooled. The solid thus separated was filtered, washed with water and crystallized from gl acetic acid, m.p. 115°C, yield (27.70%). (Found : C, 47.62; H, 2.33; N, 16.48; S, 14.52. $C_{17}H_9N_5S_2ClO_3$ requires C, 47.38; H, 2.09; N, 16.26; S, 14.86%); IR : 835, 845 (1,4-disubstituted benzene ring), 1520 (C - N stretching), 1600,

1620 (C = C & C = N), 1715 (C = O), 3040, 3060 (aromatic C-H stretching).

A similar method was adopted for the synthesis of compound 8a-*p*-nitrophenyl-3-(*p*-nitrophenyl)-thiazolo [2,3-*b*]-*s*-triazolo [3, 4-*b*] [1,3,4]thiadiazol-6(7*H*)-one **2B**(Ar=*p*-O₂N-C₆H₄) having m.p. 220°C, yield 1.5g (41.66%). (Found : C, 46.37; H, 2.42; N, 18.89; S, 14.26. C₁₇H₁₀N₆O₅S₂ requires C, 46.15; H, 2.26; N, 19.00; S, 14.47%); IR : 830, 840 (1,4-disubstituted benzene ring), 1515 (C-N stretching), 1610,1625 (C = C and C = N), 1720 (C = O), 3050 (aromatic C - H stretching).

Also 8a-*m*-chlorophenyl-3-(*p*-nitrophenyl)-thiazolo[2,3-*b*]-*s*-triazolo [3,4 -*b*] [1,3,4] thiadiazol-6(7*H*)one **2C** (Ar=*m*-Cl-C₆H₄) was prepared having m.p. 195°C, yield 1.0g(27.70%). (Found : C, 47.56; H, 2.29; N, 16.47; S, 14.63. $C_{17}H_9N_5S_2ClO_3$ requires C, 47.38; H, 2.09; N, 16.26; S, 14.86%); IR : 710, 775, 835, 875 (1,3 and 1,4-disubstituted benzene ring), 1520 (C-N stretching), 1355, 1535 (NO₂ group), 1600, 1620 (C = C and C = N), 1715(C = O), 3040 (aromatic C - H stretching).

7-*p*-Chlorobenzylidene-8a-*p*-chlorophenyl-3-(*p*-nitrophenyl)thiazolo[2,3-*b*]-*s*-triazolo[3,4*b*][1,3,4]thiadiazol-6(7*H*)-ones 3A₁

A mixture of **2A**(1.5g, .002mole), *p*-chlorobenzaldehyde (0.39g, .002mole), anhyd. sodium acetate (0.22g, .002mole) in gl aceticacid (30ml) was heated under reflux for 5 hr, concentrated, cooled and poured into crushed ice. The solid thus separated was filtered,washed with water and crystallized from glacial acetic acid, yield 1.0g(51.81%), m.p. 220°C. (Found : C, 51.73; H, 2.61; N, 12.39; S, 11.37. $C_{24}H_{13}N_5S_2Cl_2O_3$ requires C, 51.98; H, 2.34; N, 12.63; S, 11.55%); IR :825, 840 (1,4-disubstituted benzene ring), 1360, 1530 (NO₂ group), 1600, 1630 (C=C and C = N), 1515 (C-N stretching), 1690 (C=O), 3040 (aromatic C-H stretching).

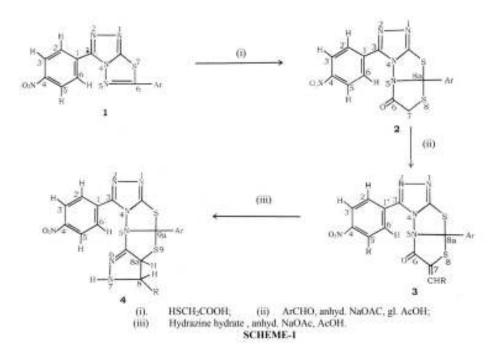
Similar method was adopted for the synthesis of compounds $3A_2$, $3B_1$, $3B_2$, $3C_1$ & $3C_2$. Their characterization data is given in Table-1.

9a-(p-Chlorophenyl)-7H-8-(p-chlorophenyl)-3-(p-nitrophenyl)-cis-8,8a-

dihydropyrazolo[3',4':4,5]thiazolo[2,3-b]-s-triazolo[3,4-b][1,3,4]thiadiazoles 4a1

A mixture of $3A_1$ (.330g.,0006mole), hydrazine hydrate (0.03g, .0006mole), anhydrous sodium acetate (.049g, .0006mole) in gl acetic acid (30ml) was heated under reflux for 6 hr. The reaction mixture was half concentrated, cooled. The solid thus separated was filtered and recrystallized from gl acetic acid, yield .150g(43.60%), m.p. 180°C. (Found: C, 49.62; H, 2.29; N, 16.71; S, 11.32. C₂₄H₁₅N₇S₂Cl₂O₂ requires C, 49.82; H, 2.59; N, 16.95; S, 11.07%); IR : 810, 825, 840 (1,4-disubstituted benzene ring), 1350, 1535 (NO₂ group), 1525 (C-N stretching), 1600, 1620 (C = C & C = N), 3040 (aromatic C-H stretching) ¹H NMR(DMSO) : 7.62(1H,d(J=10.0 Hz), C-8a-H), 7.72(1H,d(J=10.0 Hz), C-8-H), 7.95-8.15(12H, m, aromatic protons), 8.34 (1H, s, -NH group).

A similar method was adopted for the synthesis of compds $4a_2$, $4b_1$, $4b_2$, $4c_1$, $&4c_2$ respectively, their characterization data is given in Table-2.


Compd.	Ar	R	m.p.	Yield	Mol. Formula	Found (%)/Calcd.			
			°C	%		С	Н	Ν	S
3A ₂	p-Cl-	<i>p</i> -Н ₃ СО-	250	58.82	$C_{25}H_{16}N_5S_2ClO_4$	54.31	2.73	12.92	11.37
	C ₆ H ₄	C ₆ H ₄				(54.59	2.91	12.73	11.64)
3B ₁	$p-O_2N-$	p-Cl-C ₆ H ₄	240	39.37	C ₂₄ H ₁₃ N ₆ S ₂ ClO ₅	51.47	2.09	14.69	11.56
	C ₆ H ₄	_				(51.20	2.31	14.93	11.37)

3B ₂	$p-O_2N-$	<i>р</i> -Н ₃ СО-	220	39.68	$C_{25}H_{16}N_6S_2O_6$	53.49	2.61	15.31	11.67
	C ₆ H ₄	C ₆ H ₄				(53.76	2.86	15.05	11.46)
3C1	<i>m</i> -Cl-	p-Cl-C ₆ H ₄	200	46.63	$C_{24}H_{13}N_5S_2Cl_2O_3$	51.73	2.58	12.39	11.29
	C ₆ H ₄	_				(51.98	2.34	12.63	11.55)
3C ₂	<i>m</i> -Cl-	<i>р</i> -Н ₃ СО-	195	52.28	C ₂₅ H ₁₆ N ₅ S ₂ ClO ₄	54.38	2.76	12.94	11.34
	C ₆ H ₄	C ₆ H ₄				(54.59	2.91	12.73	11.64)

A. R. Ahlawat et al. / Heterocyclic Letters Vol. 6 | No.1|105-109| Nov-Jan| 2016

TABLE-2 Characterization data of compounds 4a₂, 4b₁, 4b₂, 4c₁, & 4c₂

Compd.	Ar	R	m.p.	Yield	Mol. Formula	Found (%)/Calcd.			
_			°C	%		С	Н	Ν	S
4a ₂	p-Cl-	<i>p</i> -H ₃ CO-	120	48.89	$C_{25}H_{18}N_7S_2ClO_3$	53.61	2.81	17.76	11.52
	C_6H_4	C_6H_4				(53.33	3.02	17.42	11.37)
4b ₁	p-O ₂ N-	p-Cl-C ₆ H ₄	190	47.84	$C_{24}H_{15}N_8S_2ClO_4$	48.69	2.78	19.31	10.68
	C_6H_4					(48.93	2.54	19.03	10.87)
4b ₂	$p-O_2N-$	<i>p</i> -H ₃ CO-	160	48.78	$C_{25}H_{18}N_8S_2O_5$	52.52	2.65	19.72	11.40
	C_6H_4	C ₆ H ₄				(52.35	2.96	19.54	11.16)
$4c_1$	<i>m</i> -Cl-	p-Cl-C ₆ H ₄	140	36.33	$C_{24}H_{15}N_7S_2Cl_2O_2$	49.63	2.76	16.64	11.31
	C ₆ H ₄					(49.82	2.59	16.95	11.07)
$4c_2$	<i>m</i> -Cl-	<i>р</i> -Н ₃ СО-	120	61.12	C ₂₅ H ₁₈ N ₇ S ₂ ClO ₃	53.67	2.79	17.20	11.07
	C ₆ H ₄	C ₆ H ₄				(53.33	3.02	17.42	11.37)

ACKNOWLEDGEMENT

The author is thankful to Dr. Jacob Klug of Ben-Gurion University of Negev, Israel for IR, NMR spectra and elemental analysis, to Dr. Saran Sudhir, Department of Pharmacology, Medical College, Rohtak for biological screening, to the authorities of Maharaja

A. R. Ahlawat et al. / Heterocyclic Letters Vol. 6 | No.1|105-109| Nov-Jan| 2016

SurajmalInstitute of Technology for supportive environment and to Head of the Chemistry Department, MaharshiDayanand University, Rohtak for providing laboratory facilities..

REFERENCES

- i. Jag Mohan & Virender Singh, *Indian J Chem*, 32B, **1993**, 957.
- ii. Jag Mohan, Virender Singh &Nirmal Malik, *Indian J Chem*, 34B, **1995**, 1105.
- iii. Jag Mohan & Vineet Kumar, *Indian JHeterocyclic Chem*, 7, **1998**, 297.
- iv. Jag Mohan, Indian J Chem, 37B, **1998**, 953.
- v. Jag Mohan & Sangeeta Kataria, *Indian J Chem*, 37B, **1998**, 713.
- vi. Jag Mohan, Indian JHeterocyclic Chem, 10, 2000, 65.
- vii. Jag Mohan & Anupama, *Indian J Chem*, 40B, **2001**, 303.
- viii. Jag Mohan, Indian JHeterocyclic Chem, 12, 2002, 167.
- ix. H.M. Randall, R.G. Fowler, H. Fusin and J.R. Dangle, *Infrareddetermination of organic structures* (Van Nostrand, New York), **1949.**
- x. Jag Mohan, *Organic Spectroscopy* (Narosa Publishing House, NewDelhi, India), **2001**, 223.
- xi. H. Nakahara, T. Ishikawa, Y. Sarai, T. Kondo and S. Mitsuhashi, *Nature*, 266, 1977, 165.

Received on January 23, 2016.